Transport‐associated pathway responses in ovine fetal membranes to changes in amniotic fluid dynamics

نویسندگان

  • Cecilia Y. Cheung
  • Debra F. Anderson
  • Robert A. Brace
چکیده

Current evidence suggests that amniotic fluid volume (AFV) is actively regulated by vesicular transport of amniotic fluid outward across the amnion and into the underlying fetal vasculature in the placenta. Our objective was to determine whether gene expression profiles of potential stimulators, inhibitors, and mediators of vesicular transport are altered in response to changes in intramembranous absorption (IMA) rate. Samples of ovine amnion and chorion were obtained from fetal sheep with normal, experimentally reduced or increased AFVs and IMA rates. Amnion and chorion levels of target mRNAs were determined by RT-qPCR In the amnion, caveolin-1 and flotillin-1 mRNA levels were unchanged during alterations in IMA rate. However, levels of both were significantly higher in amnion than in chorion. Tubulin-α mRNA levels in the amnion but not in chorion were reduced when IMA rate decreased, and amnion levels correlated positively with IMA rate (P < 0.05). Dynamin-2 mRNA levels were not altered by experimental conditions. Vascular endothelial growth factor (VEGF164 and VEGF164b) mRNA levels increased during both increases and decreases in IMA rate, whereas soluble Flt-1 levels did not change. Neither HIF-1α nor PBEF mRNA levels in the amnion were correlated with VEGF164 expression levels and were not related to IMA rate. Collectively, our findings suggest that changes in amnion microtubule expression may be important in the regulation of transcellular vesicular transport of amniotic fluid and thus modulate IMA rate. Further, our results are consistent with the concept that the amnion is the rate-limiting layer for amniotic fluid transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of amniotic fluid volume: mathematical model based on intramembranous transport mechanisms.

Experimentation in late-gestation fetal sheep has suggested that regulation of amniotic fluid (AF) volume occurs primarily by modulating the rate of intramembranous transport of water and solutes across the amnion into underlying fetal blood vessels. In order to gain insight into intramembranous transport mechanisms, we developed a computer model that allows simulation of experimentally measure...

متن کامل

Developmental changes in polyamine levels and synthesis in the ovine conceptus.

Polyamines (putrescine, spermidine, and spermine) are essential for placental growth and angiogenesis. However, little is known about changes in polyamine synthesis associated with development of the ovine conceptus (embryo/fetus and associated placental membranes). We hypothesized that rates of placental polyamine synthesis were maximal during the rapid placental growth that occurs in the firs...

متن کامل

Biochemical evaluation of amniotic fluid during different stages of gestation in the goat

To study changes in concentrations of some biochemical factors of amniotic fluid, 115 normal goat uteri at different stages of pregnancy were collected from slaughterhouse. After expelling of each fetus accompanied by fetal membranes, 10 ml amniotic fluid was taken from amniotic sac for biochemical analysis. Then approximate ages of fetuses were calculated by using age estimation formula. At fi...

متن کامل

Prostaglandin E2 regulation of amnion cell vascular endothelial growth factor expression: relationship with intramembranous absorption rate in fetal sheep.

We hypothesized that prostaglandin E2 (PGE2) stimulates amniotic fluid transport across the amnion by upregulating vascular endothelial growth factor (VEGF) expression in amnion cells and that amniotic PGE2 concentration correlates positively with intramembranous (IM) absorption rate in fetal sheep. The effects of PGE2 at a range of concentrations on VEGF 164 and caveolin-1 gene expressions wer...

متن کامل

Inhibitor of intramembranous absorption in ovine amniotic fluid.

Intramembranous absorption increases during intra-amniotic infusion of physiological saline solutions. The increase may be due partly to the concomitant elevation in fetal urine production as fetal urine contains a stimulator of intramembranous absorption. In this study, we hypothesized that the increase in intramembranous absorption during intra-amniotic infusion is due, in part, to dilution o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2017